CurtPalme.com Home Theater sales, calibration, service, and discussion forum. Hundreds of free manuals & setup tips.
   


 
Sign up and receive the latest newsletters by email!     Join the Forum discussions!    
    Site Map  
Home Products
For Sale
Referral
List
Photo
Gallery
Links Contact
Us
CRT Primer
Troubleshooting Tips
Mounting Methods
Definitive CRT
Projector Setup Guide
Tube/Raster Setup
Tube Condition (Wear)
Projector
Specifications
Projector Rankings
Video Processors
Ampro 1500/2000
Ampro 2300/2600
Ampro 3600/4600
Barco (Older Analog)
Barco 70x/Cine7  
Barco 500/800/801
Barco 808/Cine8
Barco 120x/Cine9
Dwin 500/700
Electrohome ECP 
Electrohome Marquee 
Mitsubishi
NEC PG
NEC XG
Panasonic 108x
Runco
Seleco
Sony 10xx
Sony 125x/127x
Sony 1292
Sony D50
Sony G70
Sony G90
Zenith 841/851
Zenith 895/900
Zenith 1200

CRT Projector Focus & Mechanical Aim

 (Page 5)

Back to Advanced Procedures Index

Page: 1 2 3 4 5 6 7
 
 

Electron Beam Focus

The electron beam focus system in a projector can be a simple one such as in an electrostatic system or a complex dynamically varied magnetic focus system. Sharp electron beam focus is easier if optical focus has already been done. Be sure to perform an adequate first optical focus prior to fine tuning beam focus.

You have also seen the word "astigmation" mentioned in regard to beam focus. Astigmation further shapes the electron focusing lens beyond regular focus controls and is important for achieving maximal beam focus. However, it should be fairly well set at the factory and new comers to CRT setup are best advised to avoid attempting CPC magnet astigmation adjustments until they are more familiar with projection CRT setup. For this reason I will cover astigmation last in this document even though it should actually be performed PRIOR to electron beam focusing adjustments.

Focusing Lens Cap to Assist with Electron Beam focusing

The phosphor grain optical focusing technique largely eliminates the need for this trick, but I mention this for completeness. Some projectors come with a special lens cap having a central hole approx 1 inch in diameter. This is intended to reduce the aperture of the optical lens and allow examination of beam focus even when optical focus is not quite correct. Because the phosphor technique easily achieves good optical focus independent of beam focus, I recommend setting the optical focus using the phosphor grain technique rather than resorting to a focusing lens cap.

Electrostatic Beam Focus

Electrostatically focused CRT projectors have their electron beam focus adjusted using variable resistors aka pots. These adjust the charge on the focus lens for each gun. Focus controls are often housed together and marked as focus for each color gun. On that same housing may also be "screen" controls which adjust G2 voltage. It is easy to inadvertently adjust the screen controls while attempting to adjust beam focus. I recommend that the novice cover screen controls with a taped on piece of cardboard to avoid accidental adjustment while attempting beam focus.

Check Beam Astigmation

Display a dot pattern on the projector. Work with only one gun on at a time and set contrast to moderately high level. Binoculars are once more useful in observing the effects of your adjustments. As you vary the focus pot setting, notice how the dots change between the overfocused and underfocused directions of focus adjustment.

Overfocus Underfocus

The overfocused state changes the dots into a central bright core with a halo around it. Ideally the bright central core is exactly centered in the halo. Also the dots should move very little as focus is adjusted between over and underfocused states.

The underfocused state changes the dots into a uniformly lit blob. Ideally the blob is perfectly circular in shape at screen center. It is normal for some deformation to be present at screen periphery.

If you find the bright core off center, the blob isn't circular at screen center, or the dots move as you adjust focus, astigmation for that gun needs to be corrected. That is done using the CPC astigmation magnets on the neck of each gun. CPC magnet adjustments should only be handled by a technician or very advanced user. Great caution is required due to risk of electrical shock, death, and equipment damage. Novices should enlist the aid of a technician if astigmation problems are noted on an electrostatically focused machine. On electromagnetically focused machines, there are often safe user accessible astigmation controls, suitable for the non-technician.

Once correct astigmation is verified (or you have decided to live temporarily with poor astigmation), proceed with the actual focusing of the guns. On an electrostatic machine it is simple:

  1. Display a fine detail focus pattern or a dot hatch pattern . Set contrast to a medium level.
     
  2. View only one gun at a time and adjust that gun's focus pot for best overall focus. It is often impossible to achieve perfect beam focus throughout the entire screen. The screen edges are particularly problematic. Should that be the case, weigh the screen center as most important for your compromise setting. That is where most film material will be sharply focused.

The blue gun electorn beam is usually left slightly underfocused to allow better grayscale tracking at higher light output levels. If you have light metering capability, that means underfocusing the blue gun enough to increase blue light output by about 20% over the fully focused state. Note that this does not mean the blue gun OPTICAL focus should be left blurred. Just the electron beam focus! They are not the same.

Electromagnetically Focused Projectors

EM focused projectors populate the pinnacle of projection CRT technology. These machines use a magnetic coil to focus their electron beams. This is often combined with a system for dynamically varying focus to achieve good center and edge focus. (This is also done on some electrostatic machines, but not with adjustability) The EM focused projector also usually has some form of dynamic astigmation controls to refine beam spot shape throughout the screen. These extra dynamic focus and astigmation controls allow very fine focus compared to electrostatic units, but more controls means greater effort to achieve final results. EM focus also induces some spiral geometry distortions which need to be counteracted. The novice can do it successfully, but more work is needed to get everything in order.

Fore and aft sliding of the focus coil and rotation of the dynamic astigmation coils are not covered in this document. Those are maneuvers safest left to experience hands.

EM focused projector typically include a remote operable control control for overall (aka center) beam focus. This is analogous to the focus pot in an electrostatic focused machine. An EM focused machine also usually provides additional controls for fine tuning beam focus at the image edges, corners or screen zones. These extra controls allow better edge to edge beam focus than just a fixed single focus control setting.

The EM focused machine also adds a mechanism for dynamically correcting beam astigmation for each portion of the image. Dynamic astigmation refines overall beam focus beyond that achievable with just static CPC magnet astigmation. Again a control is supplied for adjusting overall astigmation (center of screen usually) and other controls for each edge, corner or zone of the screen.

Check Static Beam Astigmation

The machine will usually have some sort of CPC magnet assembly for rough static adjustment of beam astigmation. If the CPC magnets are properly set, the dynamic astigmation system won't have to work as hard to achieve good astigmation. For this reason, it is a good idea to verify and adjust the CPC magnets are properly set by neutralizing all the dynamic adjustments and then checking static beam astigmation. If the underlying static astigmation is flawed, the CPC magnets should be corrected prior to performing dynamic astigmation. The complete set of CPC magnets may not be present in a EM focused machine. Consult your service manual. Once static astigmation is done as well as possible with the CPC magnets, fine tune with the dynamic astigmation system.

Set all dynamic astigmation controls to neutral to eliminate the effects of the dynamic astigmation system.

Display a dot pattern on the projector. Work with only one gun on at a time and set contrast to moderately high level. Binoculars are once more useful in observing the effects of your adjustments.

As you vary the center EM focus setting, notice how the dots change between the overfocused and underfocused directions of focus adjustment.

The overfocused state changes the dots into a central bright core with a halo around it. Ideally the bright central core is exactly centered in the halo. Also the dots should move very little as focus is adjusted between over and underfocused states.

The underfocused state changes the dots into a uniformly lit blob. Ideally the blob is perfectly circular in shape at screen center. It is normal for some deformation to be present at screen periphery.

If you find the bright core off center, the blob isn't circular at screen center, or the dots move as you adjust center beam focus, astigmation for that gun needs to be corrected. That is done using the CPC astigmation magnets on the neck of each gun. CPC magnet adjustments should only be handled by a technician or very advanced user. Great caution is required due to risk of electrical shock, death, and equipment damage. Novices should enlist the aid of a technician if astigmation problems are noted on an electrostatically focused machine.

Dynamic Astigmation

Once static astigmation has been adjusted with the CPC magnets, one can proceed with dynamic astigmation. Some projectors will automatically underfocus and overfocus the electron beam appropriately when astimation controls are engaged. If yours does not do so, manually set beam focus to be underfocused or overfocused as needed. See the later section on CPC Astigmation for details of over vs underfocused beams with regard to astigmation.

Display a dot pattern and set contrast moderately high.

Start with all astigmation controls neutralized (center, all edges, corners, or all zones).

Adjust center astigmation skew and height controls to make the center blob circular. The machine may also have dynamic equivalents of the 2 pole adjustment. Adjust that to make the central spot centered in its halo. The actually set of dynamic astigmation controls vary from model to model, but the sequence is to perfect the center astigmation first. Then do the edges and finally corners of the screen. Zones interact so go back and fine tune when done the first time.

EM Beam Focus

Once astigmation is completed, electron beam focus can be done while viewing a fine crosshatch or focus pattern. Again, start by neutralizing focus controls for center, edges, corners or all zones. Focus the center of the screen first. Then do each edge and finally the corners. This particular order allows the interaction of the edge controls to do some of the corner correction before using any corner adjustments. Once more, recheck overall beam focus and retouch as needed.

The goal of adjusting beam focus is not only to minimize electron spot size but also reduce the flare around the spot as much as possible. Any flaring will cause edge transitions to appear soft. You will create an overall sharper looking image by accepting a slightly larger spot size if doing so eliminates the flare. Overfocus the beam and then slowly back off the control to allow the flare to diminish. Leave the control at the point at which flaring just disappears. You may need to perform this adjustment with contrast turned up enough to show the flaring. This optimizes the projector for best sharpness but not necessarily best resolution. The dot size may end up slightly larger and reduce resolution, but the increased sharpness will usually make the overall image look better defined.

This concludes beam focusing for EM projectors. I have condensed the process. The reader will best find the particular controls for his machine in the service and setup manual for the machine.




... Previous Page

Next Page ...


 

© Copyright CurtPalme.com. All Rights Reserved.